
™

™

SwA WG meeting, December 15th 2010, Washington, DC

A division of Data Access
Technologies, Inc.

Tool Output Integration Framework (TOIF)

DHS SBIR Project briefing

Djenana Campara, KDM Analytics Inc.

™
(2) © 2010, KDM Analytics

SBIR topic: Software Testing and Vulnerability Analysis

 Problem

 Effective and systematic measurement of the risks posed by software

vulnerabilities

 Challenge

 One of the key challenges is that analysis solution consists of multiple

tools, information sources and services that are currently fragmented

lacking intuitive and efficient integration due to

 Inconsistency in the nomenclature of reported vulnerabilities caused by

ambiguity of vulnerability definitions (inconsistency in interpretation of CWE

instances)

 Lack of agreement on what are the parts of vulnerability to report – what
constitutes vulnerability report

 Lack of interoperability that is based on common definition of system artifacts

™
(3) © 2010, KDM Analytics

Integration issues

™
(4) © 2010, KDM Analytics

Traditional vulnerability analysis

and testing tools are built as “silos”

making it difficult to correlate

findings

The problem

Source or machine code

... incompatible vulnerability findings

same system ...
Source: NSA report, 2009

NSA reported 84% non overlapping results

™
(5) © 2010, KDM Analytics

Technological Achievements

 Creating next-generation composite vulnerability analysis tool
on top of existing off-the-shelf vulnerability detection tools

 Improving the breadth and accuracy of vulnerability analysis

 Improving the rigor of assessments by bringing vulnerability
detection into architecture context

 Normalizing vulnerability reporting protocols

 Leveraging OMG Software Assurance Ecosystem standards and
formalizations of CWE content

Delivering open source product: analyzer and run time framework for
integrating findings of vulnerability detection tools including integration of
5 existing open source vulnerability analyzers.

In addition proprietary architecture analysis tool will be integrated to show
greater value when viewing CWEs within the architecture content.

™
(6) © 2010, KDM Analytics

TOIF Architecture
C
o
d
e

Vulnerability detection tools

Knowledge mining tools

CPPcheck

FindBugs

JLint

RATS

Splint

Proprietary tool
for

architecture
analysis

Standard
protocol

KDM
Analytics

™
(7) © 2010, KDM Analytics

Weakness Conceptual Model
Example weakness

formalization

Metamodel (fragment)

satisfies

Condition
End Statement

Start Statement

Weakness

Patterns

0..*

Computation

Data Source

Data Sink

Property

propagates

produces

consumes

determines

determines

between

corresponds to

1..*

1..*

Common to all

weaknesses;

Determined by

code complexities

taxonomy

Pattern Rule

™
(8) © 2010, KDM Analytics

Weakness Logical Model

Code Path

Statement

1..*

Control Flow

Control Relation

fromto

has

CF

Example weakness

formalization

Metamodel (fragment)

TF
1..*

satisfies

satisfies

1..*

0..*

Condition
End Statement

Start Statement

Weakness

Structural Rules

Value Rules

0..*

0..*

involves

1..*

0..*

Data Flow

Data Element
0..*

Value Range

Data Relation determines

has

resolves to

from

to

uses
Resource

Property

determines

™
(9) © 2010, KDM Analytics

 Capability to integrate multiple vulnerability detection tools as “data
feeds” into the repository

 Based on a common protocol for exchanging vulnerability findings

 Achieved through normalizing vocabularies across multiple tools

 Capability to collate findings from several tools

 Capability to put vulnerability findings into the context of other facts
about the system (such as metrics, architecture, design patterns,
etc.)

 Based on existing standard protocol for exchanging system facts, the

OMG Knowledge Discovery Metamodel (KDM),

 now ISO/IEC 19506

 As the result: single integrated repository of high-fidelity facts about
a software system

The Tools’ Output Integration Framework
Fact-oriented integration

™
(10) © 2010, KDM Analytics

Integration points

 Nomenclature of the vulnerability (CWE)

 Location of the vulnerability
 basic: file, linenumber, position

 advanced: system facts

 procedure, method, statement, call, read, etc

 scenario

 Pattern
 sink

 source

™
(11) © 2010, KDM Analytics

<<CompilationUnit>>

HTTPSession.java

contains

other

elements
<<ClassUnit>>

HTTPSession

<<MethodUnit>>

doPost

<<ActionElement>>

firstName=request.getParameter(“firs
t_name”);

<<MethodUnit>>

getParameter

calls

<<MemberUnit>>

servletRequest

addresses

calls

contains

addresses

other

elements

other

elements

contains

contains

contains

<<Value>>

“first_name”

reads

public class HTTPSession {
EmployeeServlet control;
Request request;
...
control = new EmployeeServlet();
...

void processServletRequest() {...
HTTPServletRequest servletRequest=

new HttplServletRequestImpl(request);
...
control.doPost(servletRequest,

servletResponse);
...
}

}

public class EmployeeServlet {
...
void doPost(HttpServletRequest request,
HttpServletResponse response) {

...
String firstName=

request.getParameter(“first_name”);
...
}

...
}

<<MemberUnit>>

control

contains
other

elements

<<ActionElement>>

control.doPost(servletRequest, servletResponse);

reads

reads

servletResponse

writes

to and from

other elements

type

<<Signature>>

doPost

<<ParameterUnit>>

request

contains

contains

<<MemberUnit>>

firstName
contains

response

writes

<<ClassUnit>>

EmployeeServlet

<<CompilationUnit>> EmployeeServlet

KDM code facts

™
(12) © 2010, KDM Analytics

KDM abstraction

™
(13) © 2010, KDM Analytics

KDM Top model

™
(14) © 2010, KDM Analytics

KDM hierarchies

™
(15) © 2010, KDM Analytics

Knowledge Discovery Metamodel:

defines the common
vocabulary for
representing codeextends the vocabulary by providing modeling elements to

represent operational environment of the code: it
represents resources, control and data flows, determined
by the platform, and not explicit in the code

UI package extends the
common vocabulary
with resources,
control and data
flow related to User
Interfaces

Event package extends the common
vocabulary to represent state-
based behavior

Data package extends the common
vocabulary to represent persistent
data

Extends the common
vocabulary by
providing modeling
elements to
represent
architecture-specific
and domain-specific
abstractions

™
(16) © 2010, KDM Analytics

Going forward

 Integration of existing vulnerability detection tools and cross-
correlation of their findings with architectural analysis is
important for software assurance

 Commercialization through open source

 Integrate selected open source vulnerability detection tools

 Open source KDM extraction tools

 TOI Framework protocol is easy to adopt by tool vendors

 Phase II will involve a practical case study
 Assessment of DNS Bind and Wireshark

 Deliverables:

 a ready-to-use open source composite vulnerability analyzer

integrating 5 existing open source vulnerability detection tools

 integrating proprietary architecture analysis tool

 a protocol for exchanging vulnerability findings

 blueprints for adaptors of the protocol

 practical usability and accuracy data based on the case study

™
(17) © 2010, KDM Analytics

Potential Benefits

 Powerful open source vulnerability detection platform

 Reference implementation for standard-based adaptors

 Blue print how to integrate additional analyzers

 Further CWE normalization of vulnerability reports based on
the Software Fault Patterns; adoption of SFPs

 Adoption of standard-based reporting of vulnerabilities

 Utilization of open source development to advance the SwA
space

